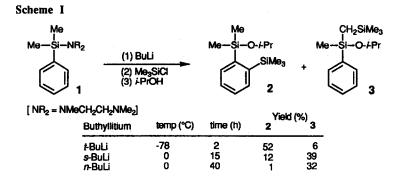

ORTHO LITHIATION DIRECTED BY AMINO GROUPS ON SILICON IN PHENYLSILANE DERIVATIVES¹

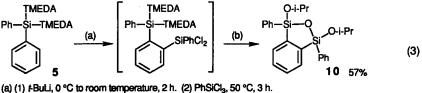
Kohei Tamao,* Hajime Yao, Yasushi Tsutsumi, Hideyuki Abe, Takashi Hayashi, and Yoshihiko Ito*


Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Kyoto 606, Japan

Summary: Phenylsilanes, which contain trimethylethylenediamino (Me₂NCH₂CH₂NMe-) group(s) on silicon, undergo selective *ortho* lithiation by treatment with *t*-BuLi, providing a new method for the synthesis of *ortho* substituted phenylsilane derivatives.

Functional group directed *ortho* metalation of aromatic compounds constitutes an elegant method for selective derivatization of aromatic compounds (eq 1).² There has been, however, no attempt for silyl-substituted aromatic compounds. We have now found that the N,N,N'-trimethylethylenediamino group (Me₂NCH₂CH₂NMe-; hereafter abbreviated to TMEDA-) on silicon exhibits a strong directing effect for specific *ortho* lithiation (eq 2). Reported herein are our initial results on the new method for the synthesis of *ortho* substituted phenylsilanes.

The efficiency for the *ortho* lithiation has been found to be greatly dependent on the nature of amino group and butyllithium, as determined in metalation of phenyldimethyl-aminosilanes 1 as model compounds (Scheme I), in which there are two possibilities for lithiation, the *ortho* lithiation (2) and lithiation of the methyl group (3). With *t*-BuLi in pentane, the TMEDA- group on silicon exhibited specifically a high selectivity for *ortho* lithiation, whereas the methyl-lithiation³ predominated (conversion < 50%) with other amino groups such as $-N(i-Pr)CH_2CH_2NMe_2$, $-N(i-Pr)CH_2CH_2CH_2NMe_2$, 1-morpholino



and N-methylpiperazino groups and no metalation was observed with -NEt₂ group. With PhMe₂Si(-TMEDA), the highest selectivity for the *ortho* lithiation was attained with *t*-BuLi, while the methyl-lithiation occurred preferentially with *s*-BuLi or *n*-BuLi, as shown in Scheme I.⁴ These results revealed that the TMEDA- group is the most suitable directing and activating ligand and *t*-BuLi should be the metalation reagent of choice.

Representative results obtained with phenyltriaminosilane (4),⁵ diphenyldiaminosilane (5),⁵ and triphenylaminosilane (6)⁵ are summarized in Table I. In all cases the metalation was carried out at 0°C ~ room temperature for 2 h with 2.8 equiv of t-BuLi. Quenching with electrophiles was usually followed by treatment with *i*-PrOH alone (in the case of Me₃SiCl) or with dry *i*-PrOH/HCl (in other cases) to convert the amino groups into more stable, easy-to-handle isopropoxysilane derivatives which were isolated by distillation or column chromatography on silica gel. In all cases only one *ortho* position was lithiated, no di-lithiation on the same phenyl ring or on two different rings being observed even in the presence of a large excess amount of *t*-BuLi. In addition to the Me₃Si group, HMe₂Si, Me₃Sn, Me, CO₂Et, and iodine groups can be introduced onto the *ortho* position in moderate overall yields (entries 3 ~ 7).⁶

An unambiguous proof for the *ortho* metalation⁴ has been obtained by formation of a cyclic siloxane derivative $10^{6.7}$ from 5 (eq 3).

In a *para*-fluorophenyl derivative 11, lithiation occurred selectively at the position *ortho* to the aminosilyl group to give 12 (eq 4), not to the fluorine atom which has been known to act as a directing substituent for *ortho*-metalation.² The parent phenyl group in 11 remained intact.

(a) (1) FBUL, 0 °C to room temperature, 21. (2) FISICI₃, 50 °C, 31 (b) (1) *i*-PrOH, room temperature, 12 h. (2) Et₃N, H₂O (1 equiv).

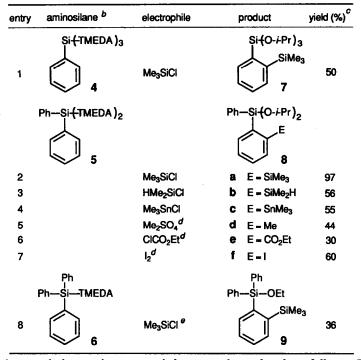
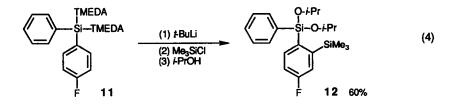
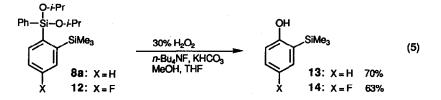




Table 1. Ortho lithiation of phenylaminosilanes ^a

^a Unless otherwise stated, the reaction was carried out on a 1 mmol scale as follows; To a solution of an aminophenylsilane in hexane (2 ml) was added a pentane solution of *t*-BuLi (2.8 equiv) at 0 °C and the mixture was stirred at room temperature for 2 h. Addition of an electrophile (10 equiv) to the mixture was followed by heating at 50 °C for 3 h. The mixture was worked up by treatment with *i*-PrOH (5 equiv) at room temperature overnight, followed by addition of a 10% aqueous solution of NH4Cl. The mixture was extracted with hexane, washed with a saturated NaCl solution, and dried over K₂CO₃. Column chromatography on silica gel afforded the pure product. ^b The -NMeCH₂CH₂NMe₂ group on silicon is abbreviated to -TMEDA. ^c Isolated overall yield. ^d The electrophile (5 equiv) was added at -78 °C. After stirring at 0 °C to room temperature for 2 h, the mixture was quenched with 2 N dry HCl in *i*-PrOH, followed by the usual workup. ^e Work-up with dry EtOH.

The ortho substituted alkoxylsilanes 8a and 12 were transformed into the corresponding ortho-trimethylsilylphenol derivatives 13 and 14, respectively, by hydrogen peroxide oxidation⁸ providing the additional proof for the ortho metalation (eq 5). The present overall transformation may be useful as a new method for the synthesis of ortho substituted phenol derivatives. It should be mentioned that the ortho metalation of phenol itself has only recently been developed.⁹

While much remained to be refined, the present procedure has afforded a new useful methodology for the synthesis of hitherto hardly accessible *ortho* substituted arylsilanes containing functional groups on silicon. It may especially be noted that unsymmetrical *ortho*-disilylbenzenes can readily been synthesized by the present method, while symmetrical *ortho*-disilylbenzenes have so far been used as a reactive monomer¹⁰ and useful synthetic reagents,¹¹ and shown to exhibit unusual reactivities.^{12,13}

References and Notes

- Silafunctional Compounds in Organic Synthesis. 48. Part 47: Tamao, K.; Tohma, T.; Inui, N.; Nakayama, O.; Ito, Y., submitted for publication. Part 46: Tamao, K.; Nakagawa, Y.; Ito, Y., submitted for publication. Part 45: Tamao, K.; Hayashi, T.; Ito, Y. *Tetrahedron Lett.* 1989, 30, 6533.
- a) Gschwend, H. W.; Rodriguez, H. R., Org. React. 1979, 26, 1. b) Figuly, G. D.; Loop, C. K.; Martin, J. C. J. Am. Chem. Soc. 1989, 111, 654. c) Block, E.; Eswarakrishnan, V.; Gernon, M.; Ofori-Okai, G.; Saha, C.; Tang, K.; Zubieta, J. J. Am. Chem. Soc. 1989, 111, 658. d) Smith, K.; Lindsay, C. M.; Pritchard, G. J. J. Am. Chem. Soc. 1989, 111, 665. e) Eaton, P. E.; Lee, C.-H.; Xiong, Y. J. Am. Chem. Soc. 1989, 111, 8016. See also references cited therein.
- Lithiation of (2-aminoalkoxy)trimethylsilane has recently been reported: Hosomi, A.; Kohra, S.; Tominaga, Y.; Shoji, M.; Sakurai, H. Chem. Pharm. Bull. 1987, 35, 1663.
- The ortho-disilylbenzene 2 has been reported previously: Ishikawa, M.; Fuchikami, T.; Kumada, M. J. Organomet. Chem. 1977, 133, 19.
- 5. The aminosilanes were prepared by treatment of the corresponding chlorosilanes with Li-NMeCH₂-CH₂NMe₂ in THF, followed by filtration and distillation in vacuo.
- 6. All new compounds have been fully characterized.
- The product 10 has recently been used as precursor for a new penta-coordinate silicate containing a fluoride bridge between two ortho-silyl groups, whose structure has been determined by X-ray crystallography: Tamao, K.; Hayashi, T.; Ito, Y.; Shiro, M. J. Am. Chem. Soc., in press.
- 8. Tamao, K.; Ishida, N.; Tanaka, T.; Kumada, M. Organometallics 1983, 2, 1694. Ref. 1 and our previous works of this series.
- 9. Posner, G. H.; Canella, K. A. J. Am. Chem. Soc. 1985, 107, 2571.
- 10. Shina, K. J. Organomet. Chem. 1986, 310, C57.
- 11. Corriu, R. J. P.; Moreau, J. J. E.; Pataud-Sat, M. J. Organomet. Chem. 1982, 228, 301.
- 12. Nagashima, H.; Tatebe, K.; Itoh, K. J. Chem. Soc., Perkin Trans. I 1989, 1707.
- 13. We thank Shin-etsu Chemical Co., Ltd. for a gift of some silicon precursors.